Faster Groebner bases for Lie derivatives of ODE systems via monomial orderings
Symbolic computation for systems of differential equations is often computationally expensive. Many practical differential models have a form of polynomial or rational ODE system with specified outputs. A basic symbolic approach to analyze these models is to compute and then symbolically process the polynomial system obtained by sufficiently many Lie derivatives of the output functions with respect to the vector field given by the ODE system. In this paper, we present a method for speeding up Gröbner basis computation for such a class of polynomial systems by using specific monomial ordering, including weights for the variables, coming from the structure of the ODE model. We provide empirical results that show improvement across different symbolic computing frameworks and apply the method to speed up structural identifiability analysis of ODE models.